A Generative Model for Sparse, Evolving Digraphs

نویسندگان

  • Georgios Papoudakis
  • Philippe Preux
  • Martin Monperrus
چکیده

Generating graphs that are similar to real ones is an open problem, while the similarity notion is quite elusive and hard to formalize. In this paper, we focus on sparse digraphs and propose SDG, an algorithm that aims at generating graphs similar to real ones. Since real graphs are evolving and this evolution is important to study in order to understand the underlying dynamical system, we tackle the problem of generating series of graphs. We propose SEDGE, an algorithm meant to generate series of graphs similar to a real series. SEDGE is an extension of SDG.We consider graphs that are representations of software programs and show experimentally that our approach outperforms other existing approaches. Experiments show the performance of both algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

A generative model for sparse discrete binary data with non-uniform categorical priors

The Generative T opographicMapping (GTM)was developed and introduced as a principle dalternativ eto the Self-Organising Map for, principally, visualising high dimensional continuous data. There are many cases where the observation data is ordinal and discrete and the application of methods developed speci cally for continuous data is inappropriate. Based on the continuous GTM data model a non-l...

متن کامل

On Shift-Invariant Sparse Coding

The goals of this paper are: 1) the introduction of a shiftinvariant sparse coding model together with learning rules for this model; 2) the comparison of this model to the traditional sparse coding model; and 3) the analysis of some limitations of the newly proposed approach. To evaluate the model we will show that it can learn features from a toy problem as well as note-like features from a p...

متن کامل

Relational Generative Topographic Map

The generative topographic mapping (GTM) has been proposed as a statistical model to represent high dimensional data by means of a sparse lattice of points in latent space, such that visualization, compression, and data inspection become possible. Original GTM is restricted to Euclidean data points in a vector space. Often, data are not explicitly embedded in a Euclidean vector space, rather pa...

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017